Menü mobile menu

Vasileios Christopoulos (University of California, Riverside)

Als Kalendereintrag speichern

Functional ultrasound imaging in neuroscience


Functional ultrasound imaging in neuroscienceRecent advances in neuroimaging technology have significantly contributed to a better understanding of human brain organization, and the development and application of more efficient clinical programs. However, the limitations and tradeoffs inherent to the existing techniques, prevent them from providing large-scale imaging of neural activity with high spatiotemporal resolution, deep penetration, and specificity in awake and behaving participants. Recently, functional ultrasound imaging (fUSI) was introduced as a revolutionary technology that provides a unique combination of spatial coverage, unprecedented spatiotemporal resolution (~100 μm, up to ~10 ms), high sensitivity (~ 1 mm/s velocity) to detect relative hemodynamic changes of only 2% without averaging over multiple trials, and compatibility with freely moving animals. While fUSI is a hemodynamic technique, its superior spatiotemporal performance and single-trial sensitivity offer a substantially closer connection to the underlying neuronal signals than achievable with other hemodynamic methods such as fMRI. In addition, the relative simplicity and portability of ultrasound have allowed fUSI to be performed in awake and behaving participants, providing minimally invasive neural imaging in species ranging from mice to humans. In vivo fUSI was first reported in 2011 by imaging cerebral blood volume (CBV) changes in the micro-vascularization of the rat brain during whisker stimulation. Since then, this technique has been applied to brain activity imaging during olfactory stimuli, resting state connectivity and behavioral tasks on freely moving rodents. Our team took the next major leap in fUSI and demonstrated for the first time that functional ultrasound images encode the motor intention of non-human primates (i.e., monkeys) before they perform an actual movement - a prerequisite to brain-machine interfaces (BMIs). Current BMI technologies that can give movement back to those who have lost it due to neurological injury or disease, require invasive brain surgery to read out neural activity. Our results showed that fUSI can decode detailed brain activity without damaging brain tissues. This is a critical step in the development of neuro-recording and brain interface tools that are less invasive, with high resolution, and scalable across species. Recently, we combined fUSI technology with machine learning to study the pathophysiology of neurological (e.g., chronic pain, epilepsy, urinary incontinence) and psychiatric (e.g., schizophrenia) diseases in pre-clinical and clinical studies, and to guide therapeutic neuromodulation treatments – a technology that currently does not exist. We performed the first in-human fUSI of spinal cord response to epidural electrical stimulation in patients who underwent surgery for chronic back pain treatment. We demonstrated that fUSI can successfully evaluate the effectiveness of a stimulation protocol in a single trial, which is of fundamental importance for developing real-time closed-loop neuromodulation systems. Additionally, we showed that fUSI can detect region-specific changes in spinal cord hemodynamics associated with micturition, opening a new avenue to develop spinal cord machine interface for patients with urinary incontinence diseases. Overall, our work establishes fUSI as a promising platform for neuroscientific investigation with potential for profound clinical impact.

Anfahrtswege zum DPZ

Lageplan des DPZ

E - Haupteingang/Anmeldung
1 - Geschäftsführung; Abteilungen: Infektionsbiologie/-modelle, Versuchstierkunde, Primatengenetik, Verhaltensökologie und Soziobiologie, Kognitive Ethologie, Neurobiologie; Verwaltung; Bibliothek; Stabsstellen: Forschungskoordination, Kommunikation, Informationstechnologie, Betriebstechnik
2 - Materialanlieferung/Einkauf
3 - Forschungsplattform Degenerative Erkrankungen; Forschungsgruppe Soziale Evolution der Primaten
4 - Abteilung Kognitive Neurowissenschaften
5 - Tierhaltung
6 - Bildgebungszentrum; Abteilung Funktionelle Bildgebung

Anreise mit dem PKW

Folgen Sie von der Autobahnausfahrt "Göttingen Nord" der B27 in Richtung Braunlage bis zur dritten Ampelkreuzung. Biegen Sie rechts ab Richtung Kliniken und anschließend links in die Robert-Koch-Straße. Am Ende der Straße fahren Sie rechts in Richtung Nikolausberg auf die Otto-Hahn-Straße. Die erste Straße zu Ihrer Linken ist der Kellnerweg, das Primatenzentrum ist ausgeschildert.

Anreise mit dem Bus

Ihr Fußweg von der Bushaltestelle Kellnerweg zum DPZ-Haupteingang/zur Anmeldung:
Von der Bushaltestelle Kellnerweg (Linie 21/22 und 23) Straße überqueren, in Fahrtrichtung des Busses gehen. Am Briefkasen links in den Fußweg einbiegen und rechts halten. Am Ende des Fußwegs rechts in den Kellnerweg abbiegen. Der Haupteingang des DPZ liegt dann auf der linken Seite.

Datum und Uhrzeit 23.05.23 - 15:00 - 16:30 Anmeldung nicht notwendig

Veranstaltungsort Michael-Lankeit-Hörsaal, DPZ


Leibniz ScienceCampus

Kontakt Dr. Christian Schloegl
Zurück zur Übersicht