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Abstract: Multi-state models generalize survival or duration time analysis
to the estimation of transition-specific hazard rate functions for multiple
transitions. When each of the transition-specific risk functions is parametrized
with several distinct covariate effect coefficients, this leads to a model of
potentially high dimension. To decrease the parameter space dimensionality
and to work out a clear image of the underlying multi-state model structure,
one can either aim at setting some coefficients to zero or to make coefficients
for the same covariate but two different transitions equal. The first issue can
be approached by penalising the absolute values of the covariate coefficients as
in lasso regularisation. If, instead, absolute differences between coefficients of
the same covariate on different transitions are penalized, this leads to sparse
competing risk relations within a multi-state model, i.e. equality of covariate
effect coefficients. In this paper, a new estimation approach providing sparse
multi-state modelling by the above principles is established, based on the
estimation of multi-state models and a simultaneous penalisation of the L1-
norm of covariate coefficients and their differences in a structured way. The
new multi-state modelling approach is illustrated on peritoneal dialysis study
data and implemented in the R package penMSM.
Keywords: Multi-state models; Regularisation; Structured fusion Lasso
penalty; Cross-transition effects.
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Figure 1: State-chart of an illness-death model with recovery illustrating the underlying
process that leads to the sequences of events. State H denotes healthy, state I
denotes illness, and state D denotes death. Transition IH is the representative
for recovery.

1. Introduction

Multi-state models are a general model class for analysing the timing of events with a
wide range of applications in medicine. In a general definition, a multi-state model is
characterized as a system of multivariate survival data where the individuals under study
may experience a sequence of transitions across time. Each transition is characterized
by an entry and an exit state, the time when the entry state is reached and the duration
of the sojourn time until the transition is either observed or censored. The durations of
the sojourn times are then influenced by transition-specific covariate effects. The most
prominent model for encompassing such covariate effects is the Cox proportional hazards
model [1]:

λq,i (t) = λq,0 (t) · exp
(
x>i βq

)
,

with transition set q ∈ {1, . . . , Q} = Q, individuals i = 1, . . . , N , time t, transition-
specific baseline hazard rate function λq,0 (t), individual-specific covariate vectors xi as
a collection of covariate observations xp,i, p = 1, . . . , P , and corresponding transition-
specific covariate coefficient vectors βq. The product x>i βq results in the individual- and
transition-specific linear predictor ηq,i.

Each transition sequence is characterized by a series of distinct entry and exit states
following paths of possible transitions. This system of paths can be illustrated by a state-
chart, where distinct states are treated as nodes and possible transitions are represented
by directed arrows. In general, transitions between two states may be reversible or
irreversible: in the first case, only one arrow exists between the two states while in
the second case two arrows connect the two states. Figure 1 shows the state-chart for
an illness-death model with recovery. This is a three-state model with the transitions
between the states healthy (H) and illness (I) being reversible, while the transitions to
death (D) are considered as being irreversible.
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The transitions of a multi-state model are categorically scaled characteristics and some
of them may have a closer relation to each other with respect to their practical
interpretation. In the illness-death model, the transitions that point from H to I (HI)
or from I to D (ID) have a major common attribute: they both lead to the aggravation
of a patients health situation. While some of the risk factors that are associated with
the sojourn times in the entry states of these transitions may have different effects
strengths, there may be others that can be described with the same effect magnitude on
both transitions, i.e. βHI = βID 6= βIH for covariate xp and transition I to H (IH). In the
underlying data generating process, this case of equal effects is mainly controlled by the
aggravation component, while the signal of the single transition-specific components is
negligible in terms of variable selection.
Covariate effects that are equal across two, or – in other situations – more transitions
will be denoted as cross-transition effects in the remainder of this article. Following
ideas from Thall and Lachin [2], the value of cross-transition effects with respect to the
interpretation of results gets clearest when we consider the relative transition hazard
rate function for two transitions q, q′, where both baseline hazard rates and all covariate
effects are unique:

λq,i (t)

λq′,i (t)
=

λq,0 (t) · exp (x1,iβ1.q) · . . . · · exp (xP,iβP.q)

λq′,0 (t) · exp
(
x1,iβ1.q′

)
· . . . · exp

(
xP,iβP.q′

) .
If βp.q = βp.q′ , the respective term will cancel out for any value of xp,i. If λq,0 (t) =
γq.q′λq′,0 (t), the baseline hazards are proportional and the relative transition hazard
rate function simplifies to:

γq.q′
exp (x1,iβ1.q) · . . . · · exp (xP,iβP.q)

exp
(
x1,iβ1.q′

)
· . . . · exp

(
xP,iβP.q′

) .
Analyses of this type are feasible using the piecewise exponential model approach. For
partial likelihood analyses, the latter investigation of proportionality of baseline hazard
rates is not directly accessible during the modelling stage.
Another type of grouping structure for transitions is present in the five-state model
which will be analysed during this article with the purpose to illustrate the established
multi-state modelling approach. In this data set, patients with a chronic kidney disease
participated in a peritoneal dialysis program at the Peritoneal Dialysis Unit, Nephrology
Department, Hospital Geral de Santo António, Porto, Portugal, between 1980 and
2011. All of the 425patients under study start with the entrance (E) to the peritoneal
dialysis program and are at-risk for the transition into the transient state peritonitis
(P), or into one of three absorbing states: death (D), transfer to haemodialysis (H),
and renal transplantation (R). If a patient has reached the transient state P, she or
he is immediately at risk again to reach one of the three absorbing states D, H, or
R. The state-chart for this multi-state model is presented in Figure 2. This data is
originally analysed in an un-penalised multi-state model by Laetitia Teixeira, Anabela
Rodrigues, and Denisa Mendonça from the University of Porto, Portugal, and Carmen
Cadarso-Suárez from the University of Santiago de Compostela, Spain, (Unpublished)
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Figure 2: State-chart for the multi-state model on the peritoneal dialysis program data.
State E denotes the entrance to the peritoneal dialysis program, state P denotes
an affection with peritonitis, state D denotes the death of a patient, state H
denotes a transfer to haemodialysis, and R denotes a renal transplantation.

and we will refer to these results (given in Table 1) as a benchmark model in Section 3.
A closer look on the results from Teixeira et al. as given by Table 1, suggests – in
combination with the model structure illustrated in Figure 2 – to take into account
the possibility of cross-transition effects: While some covariates or risk factors have
considerable differences between the estimated coefficients for the same absorbing exit
state, others, such as the presence of diabetes in connection with a transition to state
D, exhibit only small differences. These small differences are possibly negligible from an
applied perspective and a data-driven algorithm that sets these to 0 may be of a high
practical value.
Several general overview articles for multi-state models face the point of shared features
across transition types, e.g.: “Of course it is not of much interest to make a joint model
which gives the same results as the models fitted separately to each transition. The point
comes from reducing this model to one which is more parsimonious yet sensible.” [3],
“[...] go a step further in order to analyse more parsimonious models where some baseline
intensities are proportional or where some covariates have the same effect on several
transition intensities.” [4], or “Interaction effects between covariates and strata may
be used to assess whether covariate effects vary across competing outcomes [...]” [5].
These articles provide different types of statistical tests, but none gives a data-driven
and automatic algorithm to solve this problem while answering the question about the
occurrence of shared features across transition types. Schmidtmann et al. [6] use a
boosting approach for coupled selection of covariates across transitions, but they in fact
yield different estimates for each transition-specific hazard rate function. Therefore they
select effects simultaneously but donot enforce group sparsity as defined in the following.
In general, the number of degrees of freedom of a multi-state model, i.e. the number
of regression parameters to be estimated, equals the number of all transition-specific
effect parameters. This quantity increases both with the number of covariates to be
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considered and the number of transitions. Consequently, in a multi-state model with
a large number of transitions and/or potential covariates, the maximum model is quite
complex and hard to interpret. To address this difficulty and also to alleviate over-
fitting, a practical solution is to control the number of degrees of freedom of the model
and to assume that only a few of all the transition-specific effects are actually relevant
for prediction. That is, the vector of model coefficients is sparse, meaning that the
transition-specific covariates whose associated model coefficients take a value equal to
zero do not contribute to the decisions made by the multi-state process. If performed in
a non-automated way, the search for this subset of relevant model coefficients is a very
labour-intensive task. For an automated, i.e. data-driven approach, different strategies
to be used for estimating coefficients under the sparsity assumption are described in
the literature either for regression models such as linear or generalized linear models
or for the Cox proportional hazards model in event time analysis. The Least angle
shrinkage and selection operator (Lasso) [7] is one of the most prominent approaches,
with regularisation of the absolute value of model coefficients as central idea. This has
the consequence that single model coefficients may be estimated to be exactly equal
to zero, and the corresponding covariates drop out of the model. The Lasso has been
successfully applied to Cox proportional hazards models [8] and has also been generalized
to penalties with additional positivity constraints, constraints on the absolute differences
between model coefficients or constraints on squared model coefficient values [9]. This is
accompanied with an alternative estimation algorithm using a series of directional Taylor
approximations and results in the very robust performance of the R [10] add-on package
penalized [11]. However, the implementation in penalized as well as the presentation
by Goeman [9] allows to imply constraints on the absolute differences between model
coefficients only for ordinal covariates or in feature selection. This does not allow to
adequately use prior knowledge about a possible grouping structure between transitions.

The process of introducing the covariate coefficients under the sparsity assumption can be
facilitated when prior information is available about groups of features that are expected
to be jointly relevant or jointly irrelevant for prediction [12], i.e. when different groups
of covariate coefficients are expected to be jointly equal to or jointly different from zero.
Finding this type of information can be difficult in practice, but is in many practical
multi-state models directly approachable from the underlying state-chart. Having this
information at hand might be beneficial to improve the estimates of the covariate
coefficients and to reduce the number of samples required to obtain a good generalization
performance. As described by Puig et al. [13], there is in general a very wide range of
applications where sparsity at the group level is beneficial, including regression with
grouped variables, source localization, or whole genome association mapping. As with
the individual sparsity assumption, sparsity at the group level can be introduced in the
estimation process of the model coefficients by considering specific regularization norms
at the group level.

To sum up the central points: regularization is a natural task in multi-state modelling
induced by the highly parametrized nature of this model class. Using additional
information about the structure of the model can be beneficial for the estimation results
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with respect to interpretability and generalisability. Both points can be incorporated
into a single regularized estimation approach for multi-state models based on penalties
for absolute values of model coefficients in combination with penalties for particular
selected pairwise differences of model coefficients. The selection of pairs can be gathered
from the state-chart of the multi-state model. The theory and implementation of this
approach is described in the following section, based on a model with proportional
hazards assumption. The theoretical concepts and practical steps are described and
the performance is illustrated on a real data application.

2. Structured fusion Lasso penalised multi-state modelling

This section describes the construction of structured fusion Lasso penalised multi-state
models. The basic concepts of multi-state models are very thoroughly described by
Andersen and Keiding [4] and Andersen et al. [14], and the following introduction is
based on Andersen and Keiding [4].

2.1. Basic likelihood formulation for multi-state models

The underlying mathematical concept of a multi-state models is the multi-state
process Y (t), t ∈ T , i.e. a stochastic process with a finite state space K =
{1, . . . , k, . . . , k′, . . . ,K} and right-continuous sample path Y (t+) = Y (t), where t+
denotes the limit from the right to t (i.e. in a mathematically imprecise, informal
interpretation the time point immediately after t). The sample paths of such a process
are constant between the times of transitions, with time taking on values in T = [0, tmax],
with 0 < tmax < ∞. Of course, left-truncation or right-censoring can also be present
in multi-state models. Over the course of time, a multi-state process Y (·) generates a
history Yt, which is the σ-algebra generated by the observed sample path in the interval
[0, t].
We may define transition-specific transition probabilities:

Pq (s, t) = Pk.k′ (s, t) = P
(
Y (t) = k′ |Y (s) = k,Ys−

)
,

for k, k′ ∈ K, s, t ∈ T , s ≤ t, transitions denoted by q = k.k′ ∈ Q referring to transitions
from k to k′, k 6= k′, and s− defined in analogy to t+.
Using this definition, we may furthermore make the Markov assumption to define
transition-specific transition intensities:

λq (t) = lim
∆t↓0

Pq (t, t+ ∆t)

∆t
,

which we shall assume to exist.
State-charts, such as given in Figures 1 and 2, are a useful tool for
graphical representations of the transitions of a multi-state model. Let Q =
{1, . . . , q, . . . , q′, . . . , Q} define the set of observable transitions.
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Assume that multi-state processes Yi (t) are observed over intervals [0, tmax,i] for
individuals i, i = 1, . . . , N , where tmax,i is the time of termination of the observation for
individual i. Since the individual processes are constant between observed transitions,
it is equivalent to record the state at the origin Yi (0) and the counting processes:

Cq,i (t) = number of observed transitions of type q for i in [0, t] ,

described by the times tq,i,c of these transitions, with:

0 < tq,i,1 < . . . < tq,i,Cq,i(tmax,i)≤tmax,i.

We denote the overall transition counting process by Cq (t) =
N∑
i=1

Cq,i (t). We will

furthermore need an at-risk indicator process for transition q = k.k′ which we define
by:

Rq,i (t) = I{Yi(t−)=k},

and Rq (t) =
N∑
i=1

Rq,i (t), with Cq,i (t) = Cq,i (tmax,i) and Rq,i (t) = 0 for t > tmax,i. The

at-risk processes Rq (t) and Rq,i (t) are identical across t ∈ T for all q ∈ Q with the same
entry state k ∈ K.
The likelihood – abbreviated in the following by Lik –, conditional on the initial
distribution of the multi-state process and the density of covariates, is [14]:

Lik =

N∏
i=1

Li =

N∏
i=1

 Q∏
q=1

exp

− tmax,i∫
0

λq,i (t)Rq,i (t) dt

 Cq,i(tmax,i)∏
c=1

λq,i (tq,i,c)

 .

We may rewrite each individual likelihood contribution Liki as:

Liki =

Q∏
q=1

λq,i (tq,i,1) exp

− tq,i,1∫
0

λq,i (t)Rq,i (t) dt

 ·

·
Cq,i(tmax,i)∏

c=2

λq,i (tq,i,c) exp

− tq,i,c∫
tq,i,c−1

λq,i (t)Rq,i (t) dt


 .

With this formulation, “two patterns of incomplete observations are particularly easy
tractable” [4]: independent right-censoring and left-truncation (see Section 2.2.1 in
Beyersmann et al. [15]). For left-truncation, only the lower integral boundary has
to be changed from the value 0 to the time of delayed entry, which we denote by tq,i,0:

Liki =

Q∏
q=1

λq,i (tq,i,1) exp

− tq,i,1∫
tq,i,0

λq,i (t)Rq,i (t) dt

 ·
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·
Cq,i(tmax,i)∏

c=2

λq,i (tq,i,c) exp

− tq,i,c∫
tq,i,c−1

λq,i (t)Rq,i (t) dt


 .

For right censoring, a non-censoring indicator δi has to be included for the potential last
jump of the counting processes at tmax,i:

Liki =

Q∏
q=1


Cq,i(tmax,i)−1∏

c=1

λq,i (tq,i,c) exp

− tq,i,c∫
tq,i,c−1

λq,i (t)Rq,i (t) dt


 ·

·λq,i (tmax,i)
δi exp

−
tmax,i∫

t
q,i,Cq,i(tmax,i)−1

λq,i (t)Rq,i (t) dt


 .

So we can treat this as a combined product over c where a transition-specific non-
censoring indicator δq,i,c is always equal to one despite δq,i,Cq,i(tmax,i) which may also be
equal to zero:

Liki =

Q∏
q=1

Cq,i(tmax,i)∏
c=1

λq,i (tq,i,c)
δq,i,c exp

− tq,i,c∫
tq,i,c−1

λq,i (t)Rq,i (t) dt



 . (1)

2.2. Parametrization of transition-specific hazard rate functions

In event-time analysis, statistical models are often obtained by specifying transition-
specific hazard rate functions λq,i (t) for each individual i. The most widely used models
have a multiplicative structure with a transition-specific baseline hazard rate function
λq,0 (t). For an individual i, the transition-specific baseline hazard rate is then modelled
by [1, 14]:

λq,i (t) = λq,0 (t) exp
(
x>i βq

)
,

with time-constant covariates xi = (x1,i, . . . , xP,i)
> and respective effects βq =

(βq,1, . . . , βq,P )> on transition q. Their product is the transition-specific linear predictor
ηq,i = x>i βq. Hence, the effect of a covariate xp is described by factors exp (βq.p) that
proportionally modify the transition-specific baseline-hazard rate function λq,0 (t).
For the commonly applied continuous time Markov model, the multi-state process Y (t)
is a Markov process, i.e. takes the assumption that the dependence of the transition-
specific hazard rate functions λq (t) on the history Yt is only via the current state of
Y (t) and possibly via time-fixed covariates. For notational simplicity, we only use time-
constant covariates here (see Cortese and Andersen [16] for a detailed description of how
to include time-dependent covariate information such as duration lengths).
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In the simplest version, the transition-specific baseline hazard rates are kept constant:

λq,0 (t) = λq,0,

or piecewise constant:

λq,0 (t) = λ
(j)
q,0, t(j−1) < t ≤ t(j),

for a time-axis decomposed into several sub-intervals by artificial time points t(0) =
0, t(1), t(2), . . . , t(j), . . . t(J) = tmax.
The Cox partial likelihood model [1] leaves the baseline hazard rate functions unspecified,
but assumes them to be equal across individuals. If one is not interested in the underlying
functional form of baseline hazard rate function, the Cox Partial likelihood model is a
good choice since it leaves no room for functional mis-specification.
We will use both, a piecewise constant, and an unspecified hazard rate function
parametrisation, to set up fusion Lasso penalised multi-state models. Details on a
stratified Cox Partial likelihood formulation for multi-state models are given in Appendix
B, details to the piecewise constant set-up – which is referred to in the literature as
Piecewise Exponential Model – in Appendix E. Of course, many parametric alternatives
of the baseline hazard rate function specification exist, but will not be treated in this
article. In general, all of these models need a pre-estimation data management procedure
that will be described in Appendix A.

2.3. Penalised likelihood formulation for multi-state models and the fusion
Lasso penalty

A general penalised negative log (Partial) likelihood is defined by:

PenNegLog(Partial)Lik (β) = −Log(Partial)Lik (β) + pen (λ,D,β) .

Here, the penalty pen (λ,D,β) may be defined in different ways, depending on which
features of the covariate mechanism shall be detected. Technically, different penalties
are achieved by a penalty structure matrix D which is described in the following,
accompanied by the introduction of different types of penalty structures.
The least absolute shrinkage and selection operator, short Lasso, introduced by
Tibshirani [7], maximizes a likelihood “subject to the sum of the absolute value of the
coefficients being less than a constant” [7]. A Lasso type penalty term penalising the
absolute value of all elements of the parameter vector β is therefore constructed as:

penL (λ,D,β) = λ
P∑
p=1

|βp| = λ
P∑
l=1

|d>l β|,

using the penalty parameter λ, parameter vector β, and difference vectors d>l =
(0, . . . , 0, 1, 0, . . . , 0) taking value 1 in the l-th entry, and 0 otherwise. The vectors dl are
then stored as lines in the penalty structure matrix D, which is here equal to the P ×P
dimensional identity matrix. The matrix D is useful to incorporate several penalty types
into one unifying approach. This will become clearer in the following paragraph.
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The Fused Lasso [17] was introduced with the intention to generalize the Lasso
penalisation approach “for problems with features that can be ordered in some
meaningful way” [17]. This is achieved by penalising the L1-norm, i.e. the absolute
value, of both the coefficients and their successive differences. By this, the Fused Lasso
leads to sparsity of the coefficients and also of the differences between adjacent covariate
level effects. A Fused Lasso type penalty term penalising the absolute value of all
elements of the parameter vector β and all of the successive differences is constructed
as:

penFL (λ,D,β) = penL (λ1,DL,β) + penF (λ2,DF,β) ,

with penF (λ2,DF,β) = λ2

P−1∑
p=1
|βp+1 − βp| = λ2

P−1∑
l=1

|d>F,lβ|, fusion difference vectors

d>F,l = (0, . . . , 0,−1, 1, 0, . . . , 0), penalty parameter vector β, and a combined penalty

structure matrix D = [DL,DF]>, with the fusion difference vectors d>F,l stored as lines
in the penalty structure matrix DF.
The Pairwise Fused Lasso proposed by Petry et al. [18] extends the Fused Lasso [17] to
models where the predictors have no natural ordering. Here not only next neighbour
coefficient differences, but all pairwise coefficient differences are penalised. As a
consequence, the fusion difference vectors d>F,l = (0, . . . , 0,−1, 1, 0, . . . , 0) for differences
between adjacent effects are supplemented by the remaining vectors dall pairwise fusion,l

leading to all possible pairwise effect differences.
To penalise transition-specific covariate coefficients and their pairwise differences in
multi-state modelling, a Fusion Lasso penalty term will be introduced. This penalty
term takes into account the information provided by the state-chart of the multi-state
model and is of the general form:

penSFL (λ,D,β) = λ1

Q∑
q=1

P∑
p=1

|βp,q|+ λ2

∑
q,q′

P∑
p=1

|βp,q − βp,q′ |,

with λ1

Q∑
q=1

P∑
p=1
|βp,q| as Lasso type and λ2

∑
q,q′

P∑
p=1
|βp,q−βp,q′ | as fusion type penalty term.

Here, the indices q, q′ denote suitable pairs of transitions that are to be extracted from
the state-chart of the multi-state model.
One important aspect is that the solutions of penalisation approaches, as e.g. Lasso,
are not equivariant under scaling of the covariates [19]. In other words, there is a
dependency of the solution of the penalised estimation approach with respect to the
scales of the covariates when unique penalty parameter values λ1 and λ2 are selected
for both penalty term components. A frequently used solution to get rid of this general
problem in penalisation algorithms is to use standardized covariate versions [19], i.e.

x∗p :=
xp−µ̂xp
σ̂xp

, with µ̂xp as the empirical mean of xp, and σ̂xp as the empirical standard

deviation of xp. For the interpretation, the coefficients are back-transformed after the
estimation is performed. It is important to note here that this scaling has to be performed
on combined transitions q.q′, i.e. µ̂xp,q.q′ and σ̂xp,q.q′ , to maintain the fusion feature for
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coefficient estimates of covariate xp and transitions q and q′ after the back-transformation
step. This has the consequence that not all covariates within the penalised estimation
task are having exactly the same scaling. However, there is no escape from this problem:

scaling each covariate independently , i.e. x∗p,q :=
xp,q−µ̂xp,q

σ̂xp,q
and x∗p,q′ :=

xp,q′−µ̂xp,q′
σ̂xp,q′

,

leads to equal scales, group scaling leads to the preservation of the fusion feature. For
the peritoneal dialysis program data that will be analysed in Section 3, the range for
standard deviations of the scaled covariates x∗p ranges between 0.87 and 1.1, and we
therefore consider these differences to be of only low relevance. This is even more the
case given the fact that the frequencies of transition observation are quite unbalanced
in this example. A heuristic way of controlling whether these results lead to any false
effect fusions is to re-estimate the model with individually scaled covariates and check
if any different effect fusions occur.

2.4. Basic estimation algorithms and the penalised iterative re-weighted
least squares algorithm

The approach introduced by this article may be performed on the log partial likelihood
LogPartialLik (β) or the log likelihood LogLik (β), where the conditioning on other
quantities is still notationally suppressed as described in Appendix B and Appendix
E.
A naive way of getting penalised estimates would be to directly minimize the
penalised negative log (partial) likelihood PenNegLog(Partial)Lik (β) with respect to
the parameters β, i.e.

β̂ = arg min
β

(PenNegLog(Partial)Lik (β)) ,

using direct numerical optimization techniques, e.g. the Nelder-Mead [20] algorithm.
Since the performance of this would not be optimal with respect to computational cost
and instability, we rather rely on a modified version of an algorithm [8] which is based on
a first order Taylor series expansion (z− η)>A (z− η) for the log (partial) likelihood

Log(Partial)Lik (β), with η = Xβ, u = ∂ Log(Partial)Lik
∂ η , A = −∂2 Log(Partial)Lik

∂ ηη>
, and

z = η −A−1u. The first and second derivatives of the LogPartialLik (β) with respect
to the linear predictor η are given e.g. in Hastie and Tibshirani [21]. If the calculation
of A is computationally very burdensome, as it is in the partial likelihood case, one is
able to use a reduced version of A that contains the same diagonal elements ai,i, but is
equal to 0 in all other entries [21].
An iterative minimization is then performed by

β̂ = arg min
β

(
(z−Xβ)>A (z−Xβ) + pen (λ,D,β)

)
,

where z and A are calculated using the version of β from the respective previous
iteration. Before the first iteration, we set β̂ = (0, . . . , 0)>. This algorithm is iteratively
performed using numerical optimization techniques for the nested minimization in each
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step. The algorithm is pursued until an updated version of β̂ – for the first time – does
not change any more when compared to its previous version (with respect to a certain

tolerance, e.g.
∑

j |β̂old−β̂new|∑
|β̂new|

< 10−5).

An alternative, generally known, easy to implement, and therefore preferable, estimation
approach is the penalised iteratively re-weighted least squares (PIRLS) algorithm [22].
The iteratively re-weighted least squares (IRLS) algorithm is very familiar since it is
used in generalized linear models to find the maximum likelihood estimates. The PIRLS
approach provides an estimation framework that is build-up on the well established IRLS
basis, gives flexibility to incorporate penalties and yields very stable results – equal to
those of suitably specified reference software implementations [22].
To use the PIRLS algorithm for multi-state models, it is required to calculate the score
vector and Fisher information as described in later parts of this section. Furthermore we
need a local quadratic approximation Pλ of the penalty matrix generally defined as [22]:

Pλ =
L∑
l=1

λlPl =
L∑
l=1

λl
∂ ξ
(
||d>l β||Nl

)
∂ ||d>l β||Nl

Dl
(
d>l β

)
d>l β

dld
>
l .

Here, a penalty function ξ of the form ξ
(
||d>l β||Nl

)
= ||d>l β||Nl

is used. Consequently

the derivative neutralises, since
∂ ξ
(
||d>l β||Nl

)
∂ ||d>l β||Nl

= 1. Without exception, we rely on

penalty terms that penalise the L1-norm, also known as absolute value function, i.e.
||d>l β||Nl

= ||d>l β||1 = |d>l β|. A quadratic approximation NL1 to this L1 norm is

NL1

(
d>l β

)
=
√(

d>l β
)2

+ c [22], with derivative DL1

(
d>l β

)
=

d>l β√
(d>l β)

2
+c

, where c is a

very small constant (we use c = 10−8 as suggested by Petry et al. [18]). This leads to
the following special form of the quadratic approximation Pλ of the penalty matrix

Pλ =
L∑
l=1

λlPl =
L∑
l=1

λl ·

d>l β√(
d>l β

)2
+ c

d>l β
dld

>
l .

The construction of the penalty structure vector dl is of the type (0, . . . , 0, 1, 0, . . . , 0)>

to penalise a single effect (Lasso term) and of the type (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)>

to penalise the difference between two effects (fusion term), with Lasso terms and fusion
terms as described in Section 2.3.
For the estimation of penalised models, we need the score vector s (β) =
∂ LogPartialLik (β)

∂ β
of the log Partial likelihood with components sp (β) =

∂ LogPartialLik (β)

∂ βp
:

sp (β) =

n∑
i=1

δixi,p − δi ∑
j∈Ri

exp (ηj)xj,p∑
k∈Ri

exp (ηk)

 ,
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and the Fisher information matrix F (β) =
∂2 LogPartialLik (β)

∂ β ∂ β>
with components

Fp,p′ (β) =
∂2 LogPartialLik (β)

∂ βp ∂ βp′
:

Fp,p′ (β) =
n∑
i=1

δi

∑
j∈Ri

exp (ηj)xj,pxj,p′∑
k∈Ri

exp (ηk)
−

n∑
i=1

δi

( ∑
j∈Ri

exp (ηj)xj,p

)
·

( ∑
j∈Ri

exp (ηj)xj,p′

)
( ∑
k∈Ri

exp (ηk)

)2 .

The PIRLS algorithm is then composed in the following way (using a step-length factor
ν ∈ (0, 1] and iteration counter h) [22]:

β̂(h+1) = β̂(h) − ν ·
(
−F

(
β̂(h)

)
−Pλ

)−1 (
s
(
β̂(h)

)
−Pλβ̂(h)

)
.

Again, this algorithm is terminated when the relative successive differences between the
estimated coefficients is smaller than a fixed convergence criterion [22]. We define the
starting vector as β = (0, . . . , 0)>. Using several different starting values is a good
way to prevent the algorithm from running into local optima, a problem that has never
occurred during the research process leading to this article.

2.5. Selection of penalty parameters

Several alternative criteria for tuning parameter or model selection exist across the
literature. One of the most frequently used criteria to select optimal penalty parameters
λ is the Akaike Information Criterion (AIC) defined by:

AIC = −2 · Log(Partial)Lik + 2 · df.

For the calculation of the AIC, we require a measure for the model complexity, i.e. the
model degrees of freedom (df). In analogy to an article on the estimation of non-linear
covariate effects in a Cox Proportional Hazards model using penalised splines [23], the
model degrees of freedom are calculated by:

df = trace
(

(F + P) (F + P)−1 F (F + P)−1
)

= trace
(
F (F + P)−1

)
,

where F is the Fisher information, and P is the second derivative matrix of the penalty
function.
An alternative definition is established by Tibshirani et al. [17] in the fused Lasso context
with:

df = p−# {βj = 0} −# {βj − βj−1 = 0;βj , βj−1 6= 0} .

In other words, this definition is to “count a sequence of one or more consecutive non-
zero and equal βj-values as one degree of freedom” [17]. Gertheiss and Tutz [24] slightly
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adapt this definition to ordinal penalties by counting the number of unique non-zero
coefficients induced by the respective current parameter estimates. However, we prefer
to use the approach using the Fisher information matrix, since it has the advantage that
the degrees of freedom formulation is a continuous function of λ, while the definitions by
Tibshirani et al. [17] and Gertheiss and Tutz [24] introduce discontinuous step functions.
Moreover it corresponds very naturally to the PIRLS approach introduced in Section 2.4.
Using a grid search is a frequently applied strategy for the selection of a pair of tuning
parameters, see for example Tibshirani et al. [17] or Zou and Hastie [25]. This is pursued
by taking all pair-wise combinations constructed by candidate vectors λ1 and λ2 and
then choosing the best combination (λ1, λ2) amongst all pair-wise combinations of tuning
parameter values with respect to a selection criterion. Typically one would set-up a
candidate grid using a finer lower part and then checking on a coarser grid for larger
values, e.g. by using candidate vectors λl = (0, 0.01, 0.1, 1, 2, 3, . . . , 10, 50, 100), l = 1, 2.

2.6. Software implementation

The established methods are implemented in the R [10] add-on package penMSM [26].
The central function within this package is named penMSM and performs the PIRLS
algorithm established in Section 2.4. Besides other mandatory objects, it is key to
forward the penalty structure matrices PSM1 (Lasso part) and PSM2 (fusion part) as
well as the vectors with the penalty parameters for the respective penalty components
(lambda1 for the Lasso part and lambda2 for the fusion part) to the penMSM function.
Examples for these object definitions will be given in Appendix D.

3. Structured fusion Lasso estimation of a four state model for
peritoneal dialysis program data

The potential of structured fusion Lasso estimation for multi-state models will be
demonstrated during this section by analysing peritoneal dialysis study data (monthly
time scale) for chronic renal disease patients as an application example. The goal of this
section is not to perform an analysis that is completely adequate from a strictly medical
point of view but rather to illustrate the potential of the structured fusion Lasso to
obtain sparse models in the multi-state context.
Peritoneal dialysis is a class of dialysis methods that has important advantages in
comparison to other dialysis methods like Haemodialysis. Some of these advantages
are a longer salvage of the remaining renal function, less frequent complications with
respect to the dialysis access, and greater independence of patients from dialysis centres
– eligible patients can independently carry out the treatment at home which results in
a boost of life quality, for example patients are still able to travel. However, a major
disadvantage of the peritoneal dialysis is a higher risk that the abdominal cavity is
infected with pathogenic bacteria when getting into contact with the environment, with
peritonitis – an inflammation of the peritoneum, the thin tissue that lines the inner wall
of the abdomen and covers most of the abdominal organs – as the possible consequence.
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Therefore, patients must work very carefully and as sterile as possible when changing
the dialysis solutions. Moreover, since peritoneal dialysis uses sugar-based solutions
to perform dialysis, patients affected by diabetes will have to additionally adapt their
diabetic medication.
In general, end stage renal disease is a worldwide increasing health problem, with a
considerable amount of patients in need of a renal replacement treatment or having
some degree of renal dysfunction [27]. Moreover, the complications of ”diabetes and
hypertension are the two most common causes of end stage renal disease and are
associated with a higher risk of death from cardiovascular disease” [27]. Hence, increasing
the knowledge about the underlying mechanisms that lead to different complications and
complication sequences after starting a peritoneal dialysis program is of high interest.
The states in the peritoneal dialysis program study have already been described in
Section 1.
Figure 2 shows the state-chart that illustrates the possible seven transitions between
the four states, where this four state process splits up into two nested competing risk
models, both containing transitions to the absorbing states D, H, and R. The numbers
of observed transitions with entrance to the study (E) as initial state are 215for the
transition to peritonitis (EP), 47 transitions to death (ED), 56 transitions to transfer to
haemodialysis (EH), 67 transitions to renal transplantation (ER), and 40 right-censored
observations. For the transitions with peritonitis (P) as initial state, 47 transitions to
death (PD), 94 transitions to transfer to haemodialysis (PH), and 48 transitions to renal
transplantation (PR) have been observed, with 26 right-censored observations. Figure 3
gives Nelson-Aalen estimates for the seven transitions in the peritoneal dialysis program
data. The transition-specific median sojourn times given in months since entry to the
study are illustrated as vertical lines in the top of Figure 8.
Four personal or clinical characteristics are taken into account for possibly influencing
the transition-specific hazard rate functions:

• Age of the patient at entry into the study (Age, measured in years),

• Sex of the patient (Sex, male/female, with reference category defined as female),

• Diabetes (no diabetes as reference category), and

• Previous renal transplantation therapy (PRRT, no PRRT as reference category).

The age of the patients has been taken into account with a potentially non-linear effect
based on a fractional polynomial as described for the baseline hazard rate specification in
Appendix E. Appendix D gives some code snippets on how to set up design and penalty
matrices for the piecewise exponential modelling in the peritoneal dialysis application
example.
This section presents the results for the structured fusion Lasso penalized Cox model
approach, while Appendix E gives the results for the piecewise exponential model
which additionally specifies the transition-specific baseline hazard rate functions. Both
approaches are compared to an un-penalised multi-state model which is estimated using
the benchmark software BayesX [29, 30]. Here, transition-specific effects and 95%
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Figure 3: Nelson-Aalen estimates for the transitions in the peritoneal dialysis program
data (time in months). Estimates have been calculated using R add-on package
mvna [28]. The left panel shows estimates for the transitions from entrance (E)
to the study, the right panel shows estimates for the transitions from the
affection with peritonitis (P).

confidence intervals are determined for the baseline hazard rate functions, effects of age,
sex, diabetes and PRRT. Furthermore, the non-linear functional form of the baseline
hazard rate functions and the effects of age are estimated using penalised B-Splines [31].
This model has been similarly set up – using additional time-varying effects – by Teixeira
et al. A direct unpenalized estimation, e.g. by the use of the R-function coxph from the
survival package [33] using fractional polynomials for the specification of the age leads
to convergence problems and is therefore not available for comparison purposes.

E to P E to D E to H E to R P to D P to H P to R

Sex -0.27 (0.15) -0.36 (0.32) 0.26 (0.29) 0.17 (0.26) 0.17 (0.31) -0.19 (0.23) -0.58 (0.34)
Diabetes -0.06 (0.18) 0.88 (0.32) 0.55 (0.32) 0.00 (0.33) 0.88 (0.33) 0.09 (0.27) -0.20 (0.45)

PRRT 0.29 (0.14) 0.66 (0.31) 0.48 (0.29) -0.27 (0.26) 0.58 (0.31) 0.11 (0.21) -0.29 (0.30)

Table 1: Results for sex, diabetes and PRRT by Teixeira et al.: estimated transition-
specific coefficients, with respective standard error in brackets.

Table 1 shows the estimated coefficients for the binary covariates sex, diabetes and
PRRT by Teixeira et al. The results suggest to take into account possible sparsity on
the individual level, and moreover fused pairs of effects, e.g. for the effects of diabetes
on the transitions ED and PD (β̂diab.,ED = 0.88, and β̂diab.,PD = 0.88). Note here that
the effect for diabetes on the transition ER is already equal to 0, but both of these
parsimonious findings are results of rounding to the 2rd digit since the approach is not
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able to perform automated variable selection.
We estimate the structured fusion Lasso penalized Cox model on a grid of (λ1, λ2)
combinations constructed by all pair-wise combinations for candidate vectors λ1 =
{0.1, 0.305, 0.511, . . . , 4}, and λ2 = {0.1, 0.621, 1.142, . . . , 10}, as being generated as
equidistant sequences. The resulting AIC values are illustrated in Figure 4. The minimal
AIC with value 5335.456 is reached for the combination (λ1, λ2) = (2.153, 7.395). Any
value of (λ1, λ2) outside the illustrated region (results not shown) leads to a considerable
increase of the AIC, and the minimum at (2.153, 7.395) therefore stands for the global
AIC minimum.
The results for the minimum AIC model are illustrated in Figure 5. We see that the
effects for covariate sex are all equal to or smaller than 0. This yields a clearer image of
the sex effect in comparison to the un-penalised estimation, where the effect was smaller
than 0 for four transitions, and larger than 0 for three other transitions (denoted by
the middle of the 95% confidence intervals). To be more precise, all of the effects larger
than 0 in the un-penalised estimation are shrunken to 0, whereas all the effects smaller
than 0 stay below and different to the value 0. Cross-transition effects are obtained
for the transitions to death (for the effect of diabetes and PRRT) and for the transfer
to renal transplantation (again for the effects of diabetes and PRRT). Note here that
any small coefficient differences preventing setting an effect to 0 or fusing two effects
appear also for penalty parameter combinations next to the minimum AIC combination
(λ1, λ2) = (2.153, 7.395). Hence they are not attributable to a too coarse grid of penalty
parameter combination candidates. For the estimated age effects illustrated at the top
of Figure 5, we find a positive, almost linear effect of age on the transition from entrance
to peritonitis. We furthermore identify cross-transition age effects, i.e. a fusion of
transition-specific age effects, for the transition combinations EH with PH, and ER with
PR. The difference between the estimated age effects for the transition combination
ED with PD is reduced to almost 0, but the effects are not yet fused at (λ1, λ2) =
(2.153, 7.395). We therefore get strong evidence that age is not associated with different
hazards of transition to the competing endpoints in the study whether a first peritonitis
occurred or not.

4. Discussion

With the structured fusion Lasso penalised multi-state modelling approach introduced
by this article, we establish a data-driven way to perform a structured analysis of multi-
state models with potential cross-transition effect and variable selection. We presented
the approach for partial likelihood and piecewise constant baseline hazard rate models
and proposed an algorithm that is applicable to a broad class of multi-state models. This
is achieved by the use of a penalised iterative reweighed least squares algorithm that is
close to estimation algorithms known from generalized linear models. We are able to
use this algorithm in combination with a local quadratic approximation of the L1-norm.
The best combination of Lasso and fusion penalty parameters is selected using a grid
search for the minimal Akaike information criterion value.
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Figure 4: Contour plot of the Akaike Information Criterion values on the (20× 20)-
grid constructing combinations of the penalty parameters (λ1, λ2). The black
lines denote contour lines of the two dimensional AIC surface, the grey point
indicates the (λ1, λ2) = (2.153, 7.395) coordinate with the minimal AIC of
5335.46.

The application to peritoneal dialysis data showed that we are able to work out
interesting insights into the structural relationships between transitions, a problem that
has been addressed several times in multi-state modelling literature, but has never been
entrusted with a suitable data-driven estimation concept.
One potential direction of future research is to generalise the fusion of effects to nonlinear
effects represented, for example, as penalised B-splines. However, this will considerably
increase the number of penalty parameters involved such that more automatic ways
of estimating these jointly with the regression coefficients are desired. This could for
example be accomplished in a Bayesian treatment of the structured fusion Lasso where
suitable priors are assigned to the penalty parameters.
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Figure 5: Estimated transition-specific effects of age (seven plotting windows at the top),
sex, diabetes, and PRRT (seven plotting windows at the bottom) for the
structured fusion Lasso penalised Cox model in the peritoneal dialysis program
data application with the minimum AIC penalty parameter combination
(λ1, λ2) = (2.153, 7.395).
Age effect illustrations: Since we penalize the difference between effects of
the same covariate on pairs of transitions, the fusing strength is made visible by
combining pairs of effects in the respective plotting windows. Solid black lines
illustrate the respective estimated effect for the transitions as annotated in the
axis labels, dotted illustrate denote the estimate of the respective associated
effect function. Grey areas show point-wise 95% confidence intervals of the
benchmark model using the software BayesX, where smooth effect estimates
are obtained using penalised B-Splines. The estimated effects and confidence
intervals are centred around an age of 50 years.
Sex, diabetes, and PRRT effect illustrations: black plotting symbols
denote the estimated effect values, grey vertical lines illustrate 95% confidence
intervals of the BayesX benchmark model. Black bullet points (•) denote non-
fused effects different to 0, plus signs (+) denote effects equal to 0, crosses (×)
denote fused effects. Combinations of a plus sign and a cross appear as stars
(∗) and signify the coincidence of regularization (estimation on the value 0),
and a fusion of a pair of effects.
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Appendix A. Event History Observations in the Long Format

Throughout this article, the transitions of a multi-state model are denoted by q =
1, . . . , Q, and a transition q is composed by an entry state stateentry,q and an exit state
stateexit,q. Furthermore, entry time tentry,i and exit time texit,i denote transition (or
censoring) times, where the information about non-censoring of the event q is captured by
a transition-specific non-censoring indicator δq,i. In combination, the difference texit,i −
tentry,i between these two time points measures the length of duration of the at-risk spell
i. It is important to note that an at-risk spell i here denotes one time interval for one
observation unit and each i is represented by a corresponding line in the final dataset, a
consequence of using the long format for multi-state model observations as introduced
by [34]. The number of competing at-risk processes is visualized by arrows pointing away
from one node in the state-chart of a multi-state model, as e.g. in Figures 1 and 2. For
the respective entry state stateentry of a specific observed (or censored) transition, the
number of competing at-risk processes defines the number of at-risk spells that result
for this (censored) observation.
For example, for a competing risk setting with four competing exit states, one observed
event or censoring time leads to four lines in the long format dataset, representing four at-
risk spells. For the comprehensive non-censoring indicator δ used in the long data format,
only one line out of four has the capability to take the value 1 if it has been actually
observed (δ = 0 in case of censoring), the other three out of four lines strictly take value
δ = 0. In the exemplary illness-death model with recovery (state-chart in Figure 1)
and one time-constant covariate xp, two exemplary original event history observations
with the three states healthy, illness, and death denoted by {H, I,D}, transitions by
q ∈ {HI,HD, IH, ID}, might look like this:

patient id stateentry stateexit tentry texit δHI δHD δIH δID xp
1 H D 0 2.28 0 1 0 0 xp,1
2 H I 0 1.5 1 0 0 0 xp,2
2 I H 1.5 7.89 0 0 1 0 xp,2
2 H I 7.89 9.15 1 0 0 0 xp,2
2 I NA 9.15 10 0 0 0 0 xp,2

Here, we use transition-specific non-censoring indicators δq. The last observation of
patient 2 has been right-censored at time 10 and the exit state is therefore not available
(NA).
In the long format, these observations lead to the following exemplary data set, where
we use a global non-censoring indicator δ and transition-specific covariates xp.HI, xp.HD,
xp.IH, and xp.ID:
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patient id stateentry stateexit tentry texit δ xp.HI xp.HD xp.IH xp.ID
1 H I 0 2.28 0 xp,1 0 0 0
1 H D 0 2.28 1 0 xp,1 0 0
2 H I 0 1.5 1 xp,2 0 0 0
2 H D 0 1.5 0 0 xp,2 0 0
2 I H 1.5 7.89 1 0 0 xp,2 0
2 I D 1.5 7.89 0 0 0 0 xp,2
2 H I 7.89 9.15 1 xp,2 0 0 0
2 H D 7.89 9.15 0 0 xp,2 0 0
2 I H 9.15 10 0 0 0 xp,2 0
2 I D 9.15 10 0 0 0 0 xp,2

A data-set in the long-data format will consist of the extended number of n lines, with
n > N .
The construction of transition-specific covariate vector versions was performed using
transition indicators ψq,i := I{stateentry,i=stateentry,q}I{stateexit,i=stateexit,q}. It is now

convenient to formulate a general linear predictor

ηi = (ψ1,ix1,i, ψ1,ix2,i, . . . , ψ1,ixP,i, ψ2,ix1,i, . . . , ψQ,ixP,i, ) ·



β1,1

β2,1
...

βP,1
β1,2

...
βP,Q


,

in the spirit of general regression models which is inserted in each transition-specific
hazard rate formulation in the same way:

λq,i (t) = λq,0 (t) exp (ηi) .

Here the index p, p = 1, . . . , P , denotes the P covariates used to model the transition-
specific factors on the transition-specific baseline hazard rate functions. The allocation
of one spell i to its corresponding transition q is described in a broader context in [14]
and is a required practice to use the long format. In the following, the vector collecting
all transition-specific covariate coefficients will be defined as β := (β1,1, . . . , βP,Q)>.
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Appendix B. Stratified Cox partial likelihood formulation for
multi-state models

The Cox log Partial likelihood can be derived as a profile likelihood from the full
likelihood (Eq. 1) [35] and is then given in the stratified log Partial likelihood form
by

LogPartialLik (β) =

N∑
i=1

Q∑
q=1

Cq,i(tmax,i)∑
c=1

log


 exp (ηq,i)

N∑
j=1

Cq,j(tmax,j)∑
c=1

Rq,j (tq,i,c) exp (ηq,j)


δq,i,c

=
N∑
i=1

Q∑
q=1

Cq,i(tmax,i)∑
c=1

δq,i,c

ηq,i − log

 N∑
j=1

Cq,j(tmax,j)∑
c=1

Rq,j (tq,i,c) exp (ηq,j)

 ,

where ηq,i = x>i βq. Applying the long format given in Appendix A, we can formulate
this in a much more compact way as

LogPartialLik (β) =

n∑
i=1

δi

ηi − log

∑
j∈Ri

exp (ηj)

 ,

where i and j now denote single lines in the long-format data (with n as the number
of rows in this data format), which allows us to replace the transition-specific at-risk
process Rq,j (tq,i,c) with the risk-set formulation

Ri := {j : tentry,j < texit,i ≤ texit,j , stateentry,i = stateentry,j , stateexit,i = stateexit,j} .

This is an at-risk line index notation of the at-risk process described in Section 2.1. The
respective information about entry states/times and exit states/times is captured in the
long format using vectors tentry, texit, stateentry, stateexit, alike for the event indicator
δ and the matrix of transition-specific covariate information X. The abbreviation
LogPartialLik (β) is used to denote this log partial likelihood in the following.
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Appendix C. Piecewise Exponential Model

The piecewise exponential model for single transition survival models with the
assumption of piecewise constant baseline hazard rate functions is frequently used in
the literature and e.g. described in [36]. The assumption of piecewise constant baseline
hazard rate functions requires the definition of an artificial decomposition of the time
axis into several sub-intervals as e.g. in Section 2.2. This is called data augmentation
[36]. There are several possibilities to rely on already available software performing
data augmentation, e.g. the function Lexis from the R add-on package Epi [3, 37]. By
this representation of event-times via data augmentation, we are able to use a Poisson
maximum likelihood estimation scheme.
For piecewise exponential models, we define a measure ∆

(j)
q,i,c that specifies the time-

length in the j-th time sub-interval in which individual i was at-risk for the c-th
transition of transition q. Here, i denotes one single event-history observation again

as in Section 2.1. ∆
(j)
q,i,c will be equal to zero in most cases and may take a maximum

value of t(j)−t(j−1). Additionally, we define jq,i,c which specifies the sub-interval in which
the c-th transition of transition q for individual i occurred. We furthermore include the

sub-interval specific constant baseline hazard rate λ
(j)
q,0 into the exponential function of

the linear predictor by

exp
(

log
(
λ

(j)
q,0

)
+ x>i β

)
=: exp

(
α(j)
q + x>i β

)
.

Using this, we can now characterize each survival function component by

exp

− J∑
j=1

∆
(j)
q,i,c exp

(
α(j)
q + x>i β

) =
J∏
j=1

exp
(
−∆

(j)
q,i,c exp

(
α(j)
q + x>i β

))
,

and each hazard rate component by

exp
(
α

(jq,i,c)
q + x>i β

)δq,i,c
.

The fully composed likelihood is then of the form:

Lik =
N∏
i=1

 Q∏
q=1

Cq,i(Ti)∏
c=1

exp
(
α

(jq,i,c)
q + x>i β

)δq,i,c
·
J∏
j=1

exp
(
−∆

(j)
q,i,c exp

(
α(j)
q + x>i β

)) .

We now specify sub-interval specific versions δ
(j)
q,i,c of δq,i,c which take always value zero,

despite for the interval jq,i,c:

Lik =

N∏
i=1

 Q∏
q=1

Cq,i(Ti)∏
c=1

 J∏
j=1

[
exp

(
α(j)
q + x>i β

)δ(j)q,i,c · exp
(
−∆

(j)
q,i,c exp

(
α(j)
q + x>i β

))] .
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Taking the log of this likelihood transforms each of the outer products to a sum with
the same indices, and each of the inner factors changes to:

δ
(j)
q,i,c ·

(
α(j)
q + x>i β

)
−∆

(j)
q,i,c exp

(
α(j)
q + x>i β

)
.

This yields a likelihood that agrees, except for constants, with the likelihood one would
obtain from Poisson distributed observations. For clarification, assume that some δi was
Poisson distributed with mean µi = tiλi and hence results in the following log likelihood
contribution (again ignoring additive constants:

LogLiki = δi log (µi)− µi
= δi log (tiλi)− tiλi
= δi log (ti) + δi log (λi)− tiλi.

Since δi log (ti) does not depend on any parameter in λi, it can be ignored (again a
additive constant) from the point of view of estimation:

LogLiki = δi log (λi)− tiλi.

We get to a likelihood that is proportional to the likelihood for Poisson distributed

response observations δ
(j)
q,i,c with mean ∆

(j)
q,i,c exp

(
α

(j)
q + x>i β

)
, and so we get to the

following log likelihood in the estimation of the piecewise exponential model (n now
denotes the number of sub-interval at-risk observations according to the above data
augmentation):

LogLik (β) =

n∑
i=1

(
−∆ti · exp

(
α(j)
q + x>i β

)
+ δi · log

(
∆ti · exp

(
α(j)
q + x>i β

)))
,

where ∆ti := t
(j)
i − t

(j−1)
i serves as an offset. Conditioning on

{tentry, texit, stateentry, stateexit, δ,X} is again suppressed for notational simplicity.
The linear predictor ηpe

i in the piecewise exponential model is composed by:

ηpe
i = x>i β +

Q∑
q=1

ψq,i · log
(
ftq (tq,i)

)
.

with ftq (tq,i) acting a the transition-specific baseline hazard rate function λq,0 (ti) =

exp
(
α

(j)
q

)
, and ψq,i defined in Appendix A. A specification for modelling continuous

covariates that is often used throughout the literature is the class of fractional
polynomials [38]. For the estimation of the baseline hazard rate function, we use a
specification that was used in the modelling of this type of effect class before [39], i.e.:

ftq (tq,i) =
∑
m

tmq,iβtq ,m,

with m =
{

1
3 ,

1
2 , 0, 1,

3
2 , 2
}

and t0q,i := log (tq,i). This setup is furthermore applicable to
any non-linear effect component in the model, as for example the effect of age in the
application described in Section 3.
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Score vector and Fisher information matrix in the piecewise exponential model For
this alternative approach using a piecewise exponential model, the score vector s (β) =
∂ LogLik (β)

∂ β
with components sp (β) =

∂ LogLik (β)

∂ βp
is defined by:

s (β) = X> (δ − µ) ,

where µ := ∆ti · exp (ηpe
i ). The Fisher information matrix F (β) =

∂2 LogLik (β)

∂ β ∂ β>
with

components Fp,q (β) =
∂2 LogLik (β)

∂ βp ∂ βq
is defined by

F (β) = X>diag (µ) X.
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Appendix D. How to set up needed objects in the
implemented R package penMSM

A design matrix may be build up in transition-specific blocks of 16 transition-specific
covariates, e.g. by the following R [10] command using variables stored in data-set d:

X.EP <- as.matrix(d[, c("trans.EP", "bhr.1.EP", "bhr.2.EP", "bhr.3.EP", "bhr.4.EP",

"bhr.5.EP", "bhr.6.EP", "age.1.EP", "age.2.EP", "age.3.EP", "age.4.EP",

"age.5.EP", "age.6.EP", "sex.EP", "diab.EP", "prrt.EP")])

X.ED <- as.matrix(d[, c("trans.ED", "bhr.1.ED", ...)])

...

X <- cbind(1, X.EP[, -1], X.ED, X.EH, X.ER, X.PD, X.PH, X.PR)

Here, X used for piecewise exponential modelling introduces a constant baseline hazard
rate in the first column and defines the transition EP as the reference transition with
respect to the constant baseline hazard rate function – which is technically implemented
by cbind(1, X.EP[, -1], ...). The resulting design matrix X finally contains 112
columns. Note that the specification of a reference transition, as well as taking into
account any baseline hazard rate function columns, is not required for partial likelihood
modelling.
The build-up of the penalty structure matrix is conveniently separated into the Lasso
part which is caught by matrix PSM1, and the fusion part which is represented by matrix
PSM2. The Lasso part penalty structure matrix PSM1 is composed by an identity matrix
with the dimension matching the number of columns of X:

PSM1 <- diag(ncol(X))

Constant baseline hazard rate components equal to 0 seem to be a too restrictive null
model for an unbalanced number of transition observations and we therefore leave the
constant baseline hazard rates unpenalised:

PSM1[1, 1] <- PSM1[17, 17] <- PSM1[33, 33] <- PSM1[49, 49] <-

PSM1[65, 65] <- PSM1[81, 81] <- PSM1[97, 97] <- 0

The penalty structure matrix PSM2 for the fusion part consists of as many columns as the
design matrix X and 45 rows, since we want to penalise 15 covariate effects (the constant
baseline hazard rates stay again unpenalised) for each of three transition pairs sharing
an equal exit state (ED and PD; EH and PH; ER, PR):

PSM2 <- matrix(ncol = ncol(X), nrow = 45, 0)

colnames(PSM2) <- colnames(X)

PSM2[ 1, which(colnames(PSM2) %in% c("bhr.1.ED", "bhr.1.PD"))] <- c(-1, 1)

...

PSM2[ 6, which(colnames(PSM2) %in% c("bhr.6.ED", "bhr.6.PD"))] <- c(-1, 1)

PSM2[ 7, which(colnames(PSM2) %in% c("age.1.ED", "age.1.PD"))] <- c(-1, 1)

...
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PSM2[12, which(colnames(PSM2) %in% c("age.6.ED", "age.6.PD"))] <- c(-1, 1)

PSM2[13, which(colnames(PSM2) %in% c("diab.ED", "diab.PD"))] <- c(-1, 1)

PSM2[14, which(colnames(PSM2) %in% c("sex.ED", "sex.PD"))] <- c(-1, 1)

PSM2[15, which(colnames(PSM2) %in% c("prrt.ED", "prrt.PD"))] <- c(-1, 1)

...

PSM2[45, which(colnames(PSM2) %in% c("prrt.ER", "prrt.PR"))] <- c(-1, 1)
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Figure 6: Contour plot of the Akaike Information Criterion values on the (31× 31)-
grid constructing combinations of the penalty parameters λ1, λ2 =
0.01, 0.5, 1, 1.5, . . . , 14.5, 15. The black lines denote contour lines of the
bivariate AIC surface, the grey point indicates the (λ1, λ2) = (9, 5.5) coordinate
with the minimal AIC of 6252.54.

Appendix E. Piecewise exponential model results

Using ∆(j) = 1 month is an adequate choice for the length of time sub-intervals since
it offers a fine partition of the time axis with observed transition times in the interval
[1, 118] on the one hand, and a data-frame with a 44786 lines on the other hand, meaning
that the estimation can still be performed in an acceptable time, i.e. a number of
100 iterations of the introduced approach take less than one minute using an ordinary
notebook (Intel Core i7 2640M @ 2.80GHz CPU) and the software implementation
described in Section 2.6.
We estimate the model on a grid of (λ1, λ2) combinations constructed by all pair-wise
combinations for λ1, λ2 = 0.01, 0.5, 1, 1.5, . . . , 14.5, 15. The resulting AIC values are
illustrated in Figure 6. The minimal AIC value (6252.54) is reached for the combination
(λ1, λ2) = (9, 5.5). Any value of (λ1, λ2) outside the illustrated region (results not shown)
leads to a considerable increase of the AIC, and the minimum at (9, 5.5) therefore stands
for the global AIC minimum. The results for the minimum AIC model are illustrated in
Figures 8 and 9, and will be described in the following.
Figure 7 shows the paths of the 112 coefficients across the penalty parameter ranges.
The left illustration shows the regularisation of the coefficients towards the value 0, the
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Figure 7: Paths of the regression coefficients in the peritoneal dialysis program data
application using piece-wise exponential modelling: for fixed values of the
respective other penalty parameter at the value for the minimum AIC model (9
for λ1 and 5.5 for λ2, see Figure 6), the penalty parameters λ1 and λ2 increase
through the values 0.01, 0.5, 1, 1.5, . . . , 14.5, 15. Coefficients referring to the
log(baseline hazard) are illustrated using dashed lines, coefficients referring to
covariate effects are illustrated using solid lines.
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Figure 8: Estimated transition-specific log baseline hazard rate functions (seven plotting
windows at the top) and effects of age (seven plotting windows at the bottom)
for the piecewise exponential modelling in the peritoneal dialysis program data
application with the minimum AIC penalty parameter combination (λ1, λ2) =
(9, 5.5): Solid black lines denote the estimated effects by the structured fusion
Lasso penalised multi-state model using the fractional-polynomial set-up as
described in Appendix E. Dotted lines denote the estimate of the respective
fusion penalised effect function (in analogy to the role of the solid and dotted
lines in Figure 5). Grey areas illustrate point-wise 95% confidence intervals of
the benchmark model using the software BayesX, where smooth effect estimates
are obtained using penalised B-splines. The estimated effects and confidence
intervals are centred around the median transition-specific transition times for
the log baseline hazard rate function estimates and around the values at age
50 for effects of age.
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Figure 9: Estimated transition-specific effects of sex, diabetes, and PRRT for the
piecewise exponential modelling in the peritoneal dialysis program data
application with the minimum AIC penalty parameter combination (λ1, λ2) =
(9, 5.5): Black plotting symbols denote the resulting effect by the structured
fusion Lasso penalised multi-state model, grey vertical lines illustrate 95%
confidence intervals of the benchmark model using the software BayesX. Black
bullet points (•) denote non-fused effects different to 0, plus signs (+) denote
effects equal to 0, crosses (×) denote fused effects. Combinations of a plus sign
and a cross appear as stars (∗) and signify fused effects equal to 0.

right illustration shows the fusion of coefficients. Both of these regularisation features
become stronger with increasing penalty parameters. Note here that, as in any fusion
Lasso framework, the influences of the penalty parameters λ1 and λ2 on the model
coefficients are not independent. For example by changing the Lasso penalty term in
most cases different coefficient levels are introduced. Since these changes will be different
for different coefficients, the influence of the fusion penalty changes even if the fusion
penalty parameter λ2 is held constant.
As illustrated in Figure 8, we get constant baseline hazard rate function estimates for
transitions ER, PD, and PH, but observe no fusion of baseline hazard rate function
estimates. However, we receive a cross-transition age effect, i.e. a fusion of transition-
specific age effects, for the transition combination ER with PR.
As a result of the structured fusion Lasso penalised estimation we see that the effects
for covariate sex are all equal to or smaller than 0. This yields a clearer image of the
sex effect in comparison to the un-penalised estimation, where the effect was smaller
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than 0 for four transitions, and larger than 0 for three other transitions (denoted by
the middle of the 95% confidence intervals). To be more precise, all of the effects larger
than 0 in the un-penalised estimation are shrunken to 0, whereas all the effects smaller
than 0 stay below and different to the value 0. Cross-transition effects are obtained for
the transitions to death (for the effect of diabetes and PRRT) and for the transfer to
renal transplantation (again for the effects of diabetes and PRRT). Furthermore, the
diabetes effect for the transitions ER, PH, and PH are set to 0. Note here that any
small coefficient differences preventing setting an effect to 0 or fusing two effects appear
also for penalty parameter combinations (9, 6), (9.5, 5.5), and (9.5, 6). Hence they are
not attributable to a too coarse grid of penalty parameter combination candidates.
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